skip to main content


Search for: All records

Creators/Authors contains: "Atluri, Gowtham"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Biscarat, C. ; Campana, S. ; Hegner, B. ; Roiser, S. ; Rovelli, C.I. ; Stewart, G.A. (Ed.)
    The locations of proton-proton collision points in LHC experiments are called primary vertices (PVs). Preliminary results of a hybrid deep learning algorithm for identifying and locating these, targeting the Run 3 incarnation of LHCb, have been described at conferences in 2019 and 2020. In the past year we have made significant progress in a variety of related areas. Using two newer Kernel Density Estimators (KDEs) as input feature sets improves the fidelity of the models, as does using full LHCb simulation rather than the “toy Monte Carlo” originally (and still) used to develop models. We have also built a deep learning model to calculate the KDEs from track information. Connecting a tracks-to-KDE model to a KDE-to-hists model used to find PVs provides a proof-of-concept that a single deep learning model can use track information to find PVs with high efficiency and high fidelity. We have studied a variety of models systematically to understand how variations in their architectures affect performance. While the studies reported here are specific to the LHCb geometry and operating conditions, the results suggest that the same approach could be used by the ATLAS and CMS experiments. 
    more » « less
  2. null (Ed.)
  3. Abstract

    The ability to uniquely characterize individual subjects based on their functional connectome (FC) is a key requirement for progress towardprecision psychiatry. FC fingerprinting is increasingly studied in the neuroimaging community for this purpose, where a variety of approaches have been developed for effective FC fingerprinting. Recent independent studies showed that fingerprinting accuracy suffers at large sample sizes and when coarser parcellations are used for computing the FC. Quantifying this problem and understanding the reasons these factors impact fingerprinting accuracy is crucial to develop more accurate fingerprinting methods for large sample sizes. Part of the challenge in fingerprinting is that FC captures both generic and subject‐specific information. A systematic approach for identifying subject‐specific FC information is crucial for making progress in addressing the fingerprinting problem. In this study, we addressed three gaps in our understanding of the FC fingerprinting problem. First, we studied the joint effect of sample size and parcellation granularity. Second, we explained the reason for reduced fingerprinting accuracy with increased sample size and reduced parcellation granularity. To this end, we used a clustering quality metric from the data mining community. Third, we developed a general feature selection framework for systematically identifying resting‐state functional connectivity (RSFC) elements that capture information to uniquely identify subjects. In sum, we evaluated six different approaches from this framework by quantifying both subject‐specific fingerprinting accuracy and the decrease in accuracy with an increase in sample size to identify which approach improved quality metrics the most.

     
    more » « less